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Abstract—The blunting of a crack tip under creep conditions is investigated using an approximate analysis
which assumes that the crack blunts into a semi-circular shape. The rate of crack opening displacement is
determined as a function of applied load and the material creep strain rate law. The time to initiate growth of the
crack is expressed in terms of the crack opening displacement at initiation and the resuit is compared with
experimental data.

1. INTRODUCTION

The creep failure time of defect-free structures may be predicted by entering the stress/time-to-
rupture curve of the material at a reference stress based on limit analysis[1]. This result holds
provided the material is creep ductile[2] and is remarkably simple when one considers that the
mechanism of structural failure is complex, involving the initiation and spreading of zones of
creep-damaged material (material in the tertiary stage of creep) through the structure[3]. In
cracked components, provided crack growth is slower than the growth of the damage zone
ahead of the crack, the simple result still holds and the failure time may be obtained from the
reference stress based on the initial crack length[4].

When the crack growth rate exceeds the propagation rate of the damage zone it is necessary
to allow for crack extension when calculating the failure time. Experimental values of crack
growth rate have been correlated with elastic stress intensity factor, reference stress and the
contour integral C* by a number of authors. The data has been reviewed by Haigh(5] and by
Ellison and Harper[6]. Ainsworth[7] has indicated the ranges of crack velocity for which
various correlations are appropriate and for which failure time is governed by the reference
stress. In addition to an expression for crack growth rate it is necessary to know the time at
which crack growth starts in order to predict the failure time. Although an underestimate of
failure time may be obtained by assuming that crack growth starts immediately after loading,
this can be unduly pessimistic as the initiation or incubation time can occupy a significant
fraction of the total life (e.g. [8]).

The present paper considers initiation of crack growth by examining the progressive
blunting of a crack tip in creep. Since experimental evidence (e.g. [8]) suggests that crack
initiation may be described by the attainment of a critical crack opening displacement (COD)
the analysis is used to relate the initiation time to the COD at initiation. The result is compared
with experimental data.

2. BLUNTING OF ACRACK TIP IN CREEP
2.1 Material behaviour
In calculating the progressive blunting of the crack a simple secondary creep law is used and
elastic and plastic strains are neglected. Thus at each instant the stress and strain-rate fields are
the steady-state fields for the current deformed geometry of the crack tip. The effects of
including elastic, plastic and primary creep strains are discussed in sub-section 2.3. The
secondary creep law is
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where ¢, is the creep strain rate tensor, o, and S; are related to the stress tensor o;; by
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and n, oy, € are constants. The creep energy dissipation rate is

X7 — . n : = n . n+
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2.2 Crack blunting

It is assumed that the crack tip blunts into a semi-circular shape as shown in Fig. 1. Plane
strain conditions are assumed. Following Rice ({9], p. 242) the strain rates on the notch surface
may be estimated by assuming that they are compatible with a homogeneous strain rate é,,
within the notch. Then

€go = éyy COS” 0. A3)
The effect on the result of assuming that the hoop strain rate is constant on the notch surface
(s = &y,) is discussed later. The amplitude é,, of the strain rate may be determined in terms of

the creep integral C* in the same manner as Rice ([9], p. 290) determined the elastic—plastic
solution in terms of J. The C* integral is defined by

C*= II_{W dy - aijali.lax ds,}

where (x, y) are co-ordinates defined with respect to the crack as in Fig. 1, i; are displacement
rates and ds; is an element of ' which is a path, traversed anticlockwise, which encloses the
crack tip. The integral is independent of the choice of the path I'. Taking a path along the crack
surface from B to A in Fig. 1 noting that the tractions are zero on the surface gives

2
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Substituting for W from eqns (1)~(3) noting plane strain conditions this becomes
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This corresponds to the solution of Rice ([9], p. 292) for a power law plastic hardening material.
The ratio of gamma functions may be very accurately represented at large n by
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Fig. 1. Geometry of blunted crack tip.
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(The asymptotic expansion as n ~ = is 0.75+0.96/n + 0(1/n%); eqn (5) is a good approximation
even for small n with an error, for example, of less than 2% at n =2, and enables a simple
formula to be developed for the initiation time). The strain rate é,, may be approximately
related to the rate of crack opening between A and B in Fig. 1 as é,, = d/a so that eqn (4)
becomes, on noting (5),

wn+l
a-—ll(uﬂ)d = \_4_3_ [% (3'!4: 4)] . (6)

It has been assumed here that the notch retains its semi-circular shape with radius equal to
one-half of the opening displacement between A and B although the strain-rate field of eqn (3)
would not lead to such a uniform increase in radius. If, alternatively, a uniform hoop strain rate
had been assumed as being more consistent with the retention of a semi-circle, the factor of
(3n+4)/4n in eqn (6) would be replaced by (n+1)/2n. The choice between these two
approximations is somewhat arbitrary but eqn (6) is retained here on the basis that eqn (3) is
probably a better representation of the strain-rate distribution.

For constant loading C* can be taken as approximately constant provided the COD is small
compared with the crack length and other component or specimen dimensions (¢.g. remaining
ligament). Equation (6) can then be integrated to give the initiation time ¢, in terms of the COD
at initiation (8; = 24;) and the notch opening, §,, at time ¢ =0,

nt o1 VOnéoti[ C* 3n+47"
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When the notch opening after initial loading is small (5, < 5;) the initiation time is related to §;
by

_An+ 1)[ 204608, ]"’"“ ®)

= V)&l Bn +4C*

When 8, is not negligible, for example for an initially spark-machined slot, §; in eqn (8) can
simply be replaced by an effective initiation COD §,

5’1 = (5{"’"“ _ 8onln+l)l+lln‘ (9)

The result of eqn (8) may be expressed in a more convenient form by introducing the reference
stress

_ P

where P is the applied load and Py(cy) is the collapse load calculated for a perfectly plastic
material of yield stress oo. With this definition the creep integral C* may be related to the
applied loading by
C* = 0eré(0e)R (1)
where R is a characteristic macroscopic distance which may be obtained from tables (e.g. [10])
for some geometries or may be approximated in plane strain by R =0.75K*c2, in other
cases{7]. Introducing the creep rupture time t,(o) in terms of the Monkman-Grant constant ¢ as
éo)t(o)=¢ (12)

eqn (8) becomes, after some algebraic manipulation

f '_2(n+1)[ n a,]""‘*‘.

(o) nV()él3In+4R (13)
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Equation (13) is the basic result of the present paper. The time f,{c) is the lifetime of a
structure when crack-tip events are unimportant and failure is governed by overall creep
rupture mechanisms. Equation (13) then determines whether it is necessary to consider initiation
and subsequent crack growth in estimating the lifetime or whether it is sufficient to simply take
the lifetime as t,(o.s). It can be seen that initiation is influenced by the conventional material
properties € and n, by the initiation COD §; also taken as a material property, and by the
geometrical factor R. Equation (13) is discussed in detail in Section 3 and its application to
experimental data is given in Section 4.

2.3 The inclusion of plastic and primary creep strains
Equation (13) may be expressed in the form
_An+ 1)[ 4 ]"’"“
0w )= "4V3 |3n +4R {9

where €(o.., t;) is the creep strain accumulated in time ¢; at the reference stress. If the effects
of primary creep are represented by the inclusion of a time-hardening function in eqn (1), the
time-function may be removed by a redefinition of time-scale [11] leading to the initiation time
again being defined by eqn (14). This assumes the same stress dependence of both primary and
secondary creep strain rate although an effective value of n appropriate to the initiation time
could be adopted as suggested by Ewing[12]. The distance R defined by eqn (11) is, however,
not particularly sensitive to n so that it can be seen from eqn (14) that the present result is not
strongly dependent on the choice of n.

The inclusion of elastic and plastic strains in eqn (1) has two effects, First, these strains lead
to a crack tip opening on initial loading and, secondly, they lead to a period of stress
redistribution prior to the attainment of the steady-state creep solution. The COD on initial
loading has been evaluated by McMeeking[13] using finite-elements who expressed his results
as

Un’
5= (Blfao){z—(%:;—”(n' + l)fé—?} (15)

where E is Young’s modulus, v is Poisson’s ratio, o, is the yield stress, n’ is the hardening
exponent in a plasticity law similar to eqn (1) and J is the value of the contour integral for the
applied loading. The value of B depends on oo/E and n’' and on the definition of how § is
measured but the finite-clement results typically gave g8 = 0.6. When the initial loading leads to
fully plastic behaviour, J is given in a similar manner to eqn (11) and setting » = 1/2, eqn (15)
may be expressed

vy 1 V(3)Xn' + )57

€ (a'rel) - \/(3)(np+ ‘)[ ﬁR ] (16)
_An'Hf 2 51
vilar] n

where €'(0,.) is the plastic strain at the reference stress and vy is defined by egns (16) and (17).
For B=0.6, v varies between 0.56 and 2.17 for 1=n’=<cw and between 0.86 and 1.55 for
2= n's10. As noted in[13] there are differences between the finite-element values of g and
experimental values which vary from 0.44 to 1.0 for the tests quoted by McMeeking. Thus eqn
(14) gives a reasonable approximation to the COD at t = 0 if e is interpreted as the plastic strain
at the reference stress. This agreement between the creep and fully plastic results must be
regarded as somewhat fortuitous as the stress histories at the notch surface are completely
different in the two cases: for creep the load is constant and the stress falls as the notch radius
increases; for plasticity there is also an increase in notch radius but this occurs as a result of
increased load and the net effect is an approximately constant stress at the notch surface.
However, the fortuitous agreement does suggest that for practical purposes initial loading effects
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may be included by using eqn (14) with ¢ interpreted as the total strain at the reference stress.
As for primary creep strains the insensitivity of eqn (14) to n means that an effective n
(evaluated, say, from the isochronous stress-strain curve at time ¢;) can be used.

Fully plastic behaviour has been assumed on initial loading in expressing eqn (15) in the
form of eqn (16) or (17). However, when the loading is small so that only small-scale yielding
occurs, then J = (1 - ¥)K*/E and €(0,e;) = 0.i/ E. Substituting these into egn (15) again leads to
eqn (17) but with y(n, B) replaced by vy, where

e A - A

As noted by Ainsworth[7], for n =1, R =3/4K?/oZ, in plane strain and is not particularly
sensitive to n. Thus use of eqn (14) instead of eqn (15) to predict the COD on initial loading will
only lead to errors for small scale yielding when n is large and o, <€ 0y, i.e. when the load is
small compared to the collapse load. From eqn (17), in these cases the value of 8/R on initial
loading is very small (of order o.«/E) and will only have a significant effect when the predicted
value of t/t,(o,) from eqn (13) is very small. For practical purposes initiation may be assumed
to occur at t =0 when the predicted value of tft,(o..) <1 and this is discussed further in
Section 3 below.

The effect of neglecting stress redistribution to the steady-state creep solution may be
assessed from the work of Bassani and McClintock{14] who examined redistribution from an
initially elastic response. They found that the COD during the redistribution period was of order
the elastic COD and that the redistribution time (t..4, Say) was typically of order

tea = (‘-Tref/E)/é(Uref)

(see also Penny and Marriott[11] for a general discussion of redistribution times). Thus from
eqn (13)

tred/ti -~ (UrcflE)/(allR)

Since the elastic strain is typically less than 0.1% the redistribution time is a small fraction of ¢;
except when 8/R is small. Thus, as above for the COD on initial loading, redistribution effects
should be small except when the predicted value t/t,(o.) <1 in which case initiation may be
assumed to occur at t =0 for practical purposes.

3. DISCUSSION OF THE THEORETICAL RESULT

When the reference stress is defined by eqn (10) with the multi-axial yield surface chosen
similar to the multi-axial creep rupture surface, the time ¢,(o.) is an upper bound on the failure
time of a structure[1). In recent years this and other developments of reference stress methods
have enabled the creep design of defect-free components to be based on limit analysis[15] so
providing an obvious similarity between low and high temperature design methods. For initially
cracked components, Goodall and Chubb [4] have shown that when crack propagation effects are
negligible the creep life of a component is still determined by the reference stress provided
allowance is made for the presence of the crack in calculating the limit load. Again there is a similar
result at low temperature where, at one extreme of behaviour in post-yield fracture mechanics,
the reduction in load-bearing capacity of a component is determined by the reduction in the limit
load due to the presence of the crack[16]. However, just as this represents only one extreme of
behaviour and the load-bearing capacity may be further reduced if failure is governed by crack tip
events[16], so the load-bearing capacity at elevated temperature may be further reduced if failure
is governed by the initiation and growth of a dominant creep crack.

The analysis of the previous section as expressed in eqn (13) enables a direct assessment to
be made of the need to consider creep crack growth effects. When the r.h.s. of eqn (13) is close
to or greater than unity, failure is governed by the reference stress. The influence of a crack on
failure time is then simply determined by its influence on the reference stress, i.e. from eqn (10)
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by its influence on the limit load. Although eqn (13) is clearly incorrect when it predicts
t; > t,(arer) since L, (o) is an upper bound on the final failure time[1], this is of little practical
significance; tertiary creep strains could be included by using eqn (14) but if tertiary strains are
important at the reference stress at {;, then f; must be close to t.(c..) and crack propagation can
be neglected in determining final failure time.

It can be observed from eqn (13) that initiation is influenced both by material and size
effects. Size effects are governed by the macroscopic distance R defined by eqn (11): for
geometrically similar specimens R is directly proportional to specimen size; for small cracks in
large components R is approximately proportional to crack size. Early initiation may be
expected in materials with high secondary creep rates (high €) and/or low values of initiation
displacement &,. It should be recognized, however, that these material properties are unlikely to
be independent as ductile materials with a high é may also exhibit a high §; and vice-versa for
creep brittle materials. The stress exponent n is not particularly important in determining
initiation and eqn (13) could be expressed as

3 aln+1
tl/ tr(o'rel) = _a_(e."_)(%) . (19)

From eqn (13) the value of o varies between 0.8 and 1.2 but as with the constant g8 in eqn (15)
there may be a wider range shown by experimental results. Equation (19) should, however, give
the correct functional dependence and for large n the important grouping becomes simply
(86/€R).

Plastic and primary creep strains may be included approximately by using eqn (14) instead
of eqn (13). This may be necessary for analysing results of laboratory tests at high stresses but
should not be important at practical stress levels where safety factors against plastic collapse
and creep rupture should ensure a value of o, significantly lower than the yield stress. Initial
strains are then only important when initiation occurs at low values of 8/R, i.e. at low total
strain. As noted in Section 2.3 above, eqn (14) is not valid in these cases but since the predicted
value of £;/t(o..) will then be small, for practical purposes initiation may be assumed to occur
at t =0 and an assessment based on crack growth.

4. COMPARISON WITH EXPERIMENTAL RESULTS

In this section the initiation times predicted by eqn (13) are compared with experimentally
measured initiation times reported by Taylor and Batte[17] and Haigh[18]). Taylor
and Batte[17] tested various sized double-edge notched specimens of a 1% Cr MoV steel. Tests
were terminated prior to failure and the specimens examined metallographically to determine
whether or not initiation had occurred. By testing a large number of specimens for different
times and at different stresses an approximate boundary was determined between specimens
which had initiated and those which had not. This boundary is shown in Fig. 2 which also
includes plain. specimen rupture data. It can be seen that initiation occurred at times consider-
ably less than the rupture time at the reference stress. Taylor and Batte[17] measured the
initiation displacement and found this to be sensibly constant at 2 um for initiation times
greater than 500 hr. An increase in initiation COD was found at shorter initiation times, i.e. in
tests at higher stresses. The predictions of eqn (13) are shown in Fig. 2 for §; =2 um, n=7,
€ =2% and R =5 mm which is a typical value; the effect of allowing for the increased §; at
short times is also shown. It can be seen that eqn (13) is in reasonable agreement with the
initiation line estimated by Taylor and Batte{17}. A more detailed treatment of the individual
data points is given in Fig. 3 where the different specimen geometries have been used in
calculating R (see Appendix for details). The boundary between specimens which had initiated
and those which had not is well described by eqn (13), some scatter occurring about the line but
no obvious systematic errors in describing the widely different specimen geometries (R varying
by a factor of 16) and initiation times (from 50 hr to in excess of 16000 hr). The scatter about
the boundary #/t; =1 in Fig. 3 is comparable with the scatter about the boundary estimated
in[17] and shown in Fig. 2. One point in Fig. 3 shows initiation at a time which is 0.38 times that
predicted by eqn (13) but this specimen had edge cracks of significantly different sizes; allowing
for the eccentricity of loading would increase the reference stress by about 10%, i.e. reduce the
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Fig. 2. Comparison of theory with experimental data of Taylor and Batte.
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Fig. 3. Comparison of theory with experimental results of Taylor and Batte.

predicted initiation time by a factor of 2 so bringing the point within an acceptable scatter band.

Haigh[8] tested compact tension specimens of several Cr MoV steels. The experimental
results for two different steels (Material 1 and Material 2 in Haigh’s terminology) are given in
Table 1 along with the predictions of eqn (13). Details of the analysis are given in the Appendix.
Tests were performed on spark-machined slots so eqn (9) has been used to obtain the effective
initiation COD §; for use in eqn (13). It can be seen that the effective initiation COD is sensibly
constant for each material, the value for material 1 being about twice that for material 2.
The agreement between experimental and predicted values of t/t,(o.) is good for material 2
but not as good for material 1. The available creep strain data is at low stresses (154 MPa and
less) and shows that for the same stress material 1 has a considerably lower creep strain rate
than material 2. Thus since, in addition, the initiation COD in material 1 is twice that in material
2 a considerably longer initiation time would be expected in material 1 for the same load. It can
be seen from Table 1 that this is not the case. This could simply be due to experimental scatter
or it may suggest that at higher stresses (0.« ~ 200 MPa) the differences in the creep strain rates
of the two materials are not as great as at lower stresses. There is insufficient materials data to
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Table 1. Comparison of theory with experimental results of Haigh([8]

Experimental Measurements Predictions using evqn. (13,
Material | o t o ) ¢ 5y 5,-8 5 R Y
ref r' ref i T i o i G
(MPa) (n ) r'rer (um) (um)  (mm) ¢ 0rer)
1 172 2400 750 0.32 230 171 12 0.75 €=2.5%
1 263 700 180 0.26 270 204 11 0.96 n=?
2 148 1900 550 0.29 105 71 11 0.32 "
€=3%
2 169 820 250 0.31 125 86 11 0.38
n=7
2 203 250 130 0.52 120 82 11 0.36

resolve this latter point. However, some experimental scatter may be expected as for n=7 a
factor of two difference in rupture time is caused by a change in reference stress of 10% which
would be caused, for example, by a change in measured crack length of only 1.3 mm. Finally it
may be noted that Goodall and Chubb[4] examined the final failure times of these specimens
and found that they were reasonably well predicted by the creep rupture time at the reference
stress; this conclusion would be drawn from the predicted initiation times for material 1.

CONCLUDING REMARKS

An expression has been derived which enables the time for initiation of creep crack growth
to be determined from the COD at initiation and plain specimen creep strain and creep rupture
data. The result has been normalised by the creep rupture time at the reference stress which is
the lifetime which can be achieved when failure is governed by overall creep rupture
mechanisms rather than by the initiation and growth of the crack. This enables a direct
assessment of the importance on failure of crack tip dominated effects, Early initiation times
may be expected in materials with low values of initiation COD and/or high values of the
product of secondary creep rate and time to rupture. A size effect is also predicted with
initiation occurring earlier in larger specimens for the same applied stress. There is encouraging
agreement between the theoretical predictions and experimentally measured initiation times.

Acknowledgement—This paper is published by permission of the Central Electricity Generating Board.
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APPENDIX ANALYSIS OF EXPERIMENTAL DATA
Data of Taylor and Batte[17]

The geometry tested by Taylor and Batte[17] was a double-edge cracked plate with crack lengths a and width 2b. The
length parameter R of eqn (11) has been approximated as R = K/o?.;. This approximation is quite accurate for a
centre-cracked plate for moderate a/b and n < 10{7]. The reference stress has been taken as the net section stress with no
allowance for eccentricity of loading when the edge cracks are of different lengths. The stress intensity factor has been
calculated according to the formula.

K = oV(ma){1.12+0.2(a/b) - 1.2(a/b)* + 1.9%(alb)*}

where o is the gross section stress and a has been taken as the length of the longer of the two edge-cracks. Detailed
analysis of the data leads to values of R ranging from 1.1 to 18.8 mm. A typical value R = 5 mm has been used for the
prediction in Fig. 2.

The plain specimen data may be reasonably represented by n=7 and é=2%. It can be seen from Fig. 2 that
considerable extrapolation of the rupture data is required for stresses less than about 100 MPa so that the predicted
initiation times used in Fig. 3 are only approximate at low stresses. The COD at initiation is sensibly constant at 2 zm for
initiation times greater than 500 hr (see Fig. 6 of {17]). The solid curve of Fig. 2 and Fig. 3 have been produced using this
value of §; =2 um. The effect of allowing for the increase in 5; at short ¢; (see [17], Fig. 6; e.g. 8 =7 um at ¢; = 100 hr) is
shown in Fig. 2. Using a larger §; at small t; reduces some values of (t/t;) in Fig. 3 but makes no significant difference to the
boundary between specimens which had initiated and those which had not. It may be noted that the effect at short t; may
not be as great as that depicted in Fig. 2 as the increase in §; at high stresses may also be associated with increases in é and n,
although on the basis of high stress data Ewing[12] used € = 2.22% and n = 10 which are close to the values used here.

Data of Haigh(8)

Haigh tested compact tension specimens of width 65 mm and net thickness 22.5 mm. Values of reference stress for
these tests have been calculated by Goodall and Chubb[4] and these are reproduced in Table 1. Values of C* for this
geometry have been tabulated by Shih[10] for various stress indeces n. The value n =7 has been used in the present
calculations for both materials 1 and 2 and the resulting values of the geometrical parameter R of eqn (11) are given in
Table 1. It may be noted that Shih{10) expresses his results in a form which is essentially

C* = greré(oreXw — adhs(alw, n)

where a is crack length, w is specimen width, h, is a function which is tabulated, and o is defined according to eqn (10)
but using a different expression for limit load to that used by Goodall and Chubb[4). Equation (11) then gives

R =(w~ a)hi(alw, nXoldlore)*.

The reference stress obtained in[4] is based on experimental evidence and is preferred here. The comparison between
experimental and predicted values of #/t,(c.r) is, however, not affected by the choice of limit load expression used to
define o,(: a change in o, changes R and hence the predicted t/t, of eqn (13) but the change in o, also changes ,(0er)
and hence the experimental t/t,. If o had been used in calculating the results in Table 1 the experimental and predicted
values of 1,/1,(a,r) would both have been reduced by about 40%.

For material 1 the plain specimen strain and rupture data has been represented by n =7 and é = 2.5%. The value n =7
is a good fit to the rupture data and € = 2.5% has been suggested by Ewing[12) (see Table 4 of that paper). For material 2
the value n = 7 is again a good fit to the rupture data and é = 3% appears a reasonable fit to the limited strain data in(8). In
calculating the effective COD, §;, using eqn (9) the initial spark-machined notch has been assumed to be of radius
80/2 =260 um (see [8)).



